
Template Builder User Guide
Version 3.1

Copyright ©2024 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed,
stored in a retrieval system, translated into any language, computer language, or transmitted
in any form or by any means, electronically, mechanically, magnetically, optically,
chemically, photocopied, manually, or otherwise, without prior written permission from
Vizrt.
Vizrt specifically retains title to all Vizrt software. This software is supplied under a license
agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication “as is” without warranty of any kind, either expressed or
implied. his publication may contain technical inaccuracies or typographical errors. While every
precaution has been taken in the preparation of this document to ensure that it contains
accurate and up-to-date information, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained in this document. Vizrt’s policy is one of continual development, so the
content of this document is periodically subject to be modified without notice. These changes will
be incorporated in new editions of the publication. Vizrt may make improvements and/or changes
in the product(s) and/or the program(s) described in this publication at any time.
Vizrt may have patents or pending patent applications covering subject matters in this
document. The furnishing of this document does not give you any license to these patents.

Antivirus

Vizrt does not recommend or test antivirus systems in combination with Vizrt products, as the use
of such systems can potentially lead to performance losses. The decision for the use of antivirus
software and thus the risk of impairments of the system is solely at the customer's own risk.

There are general best-practice solutions, these include setting the antivirus software to not scan
the systems during operating hours and that the Vizrt components, as well as drives on which
clips and data are stored, are excluded from their scans (as previously stated, these measures
cannot be guaranteed).

Technical Support

For technical support and the latest news of upgrades, documentation, and related products,
visit the Vizrt web site at www.vizrt.com.

Created on

2024/06/26

http://www.vizrt.com

Template Builder User Guide - Version 3.1

3

Contents

1 Introduction.. 6

1.1 Workflow ...6

1.2 Related Documents..7

1.3 Feedback ...7

2 Setup and Configuration ... 8

2.1 Opening Template Builder..8

2.2 Configuring Preview Server ..8

2.3 Specifying a Graphic Hub Endpoint ..8

2.4 Monitoring Graphic Hub Status ..9

3 Creating and Managing Templates.. 10

3.1 Creating a New Template ...10

3.2 Opening a Template ..12

3.3 Template Management ..12

3.3.1 Manage Scenes ... 12

3.3.2 Advanced Dialog... 12

3.3.3 Template Compatibility... 13

3.3.4 Concept Manager.. 14

4 Customizing Templates .. 16

4.1 Template Scripting...17

4.1.1 The Script Editor ... 17

4.1.2 Initialization ... 20

4.1.3 Field Access.. 20

4.1.4 Quick Start Examples .. 27

4.2 Template Layout ..32

4.2.1 Creating a Template ... 32

4.2.2 Adding Alternative Layout Forms .. 33

4.3 Template Fields ...36

4.3.1 Field Tree ... 36

4.3.2 Field Properties... 39

4.3.3 Field Types ... 41

4.3.4 Data Entry... 45

4.3.5 Inline HTML Fragment... 54

4.3.6 Inline HTML Panel ... 59

Template Builder User Guide - Version 3.1

4

4.4 Custom HTML Templates ...61

4.4.1 Setting Up a Simple Custom HTML Template... 61

4.4.2 Full Screen for Custom HTML Panels ... 63

4.4.3 Connecting a Custom HTML Template to a Viz Pilot Template... 64

4.4.4 Connecting a Custom HTML Template to a Viz Pilot Template - Advanced....................... 66

4.4.5 Creating a List of Functions Where You Can Bind Fields... 67

4.4.6 Redesigning Concept/Variant Fields.. 69

4.4.7 Controlling the Auto-generated Fill In Form from the HTML Template 70

4.5 Auto-generated Title ..73

4.6 Environment Variables ...74

4.6.1 Defining Environment Variables .. 74

4.6.2 Using Environment Variables... 74

4.7 Execution Logic Editor ...76

4.7.1 Enabling the Execution Logic Editor .. 76

4.7.2 Execution Logic Editor .. 77

4.7.3 Working with Execution Logic ... 78

5 Transition Logic and Combo Templates .. 81

5.1 What is Transition Logic (TL)?...81

5.2 How does TL Work?..81

5.2.1 Master Scenes... 81

5.2.2 Object Scenes ... 81

5.2.3 Combo Templates... 81

5.2.4 TL Terminology... 82

5.3 Working with Transition Logic and Combo Templates ..82

5.3.1 Creating a New Combo Template.. 82

6 Previewing Content ... 85

6.1 Viz Scene - OnPreview() ..86

7 Appendix.. 89

7.1 Keyboard Shortcuts..90

7.1.1 Graphics Preview Player Shortcuts ... 90

7.2 Troubleshooting ..91

7.2.1 Create New Button Not Displayed on UI... 91

7.2.2 GH Scenes Tree Not Displayed when Pressing Create New... 91

7.2.3 An Error Message is Shown when attempting to Open a Scene .. 91

7.2.4 Preview Server Error Message Shown when trying to Open a Scene.................................. 91

7.2.5 Scene Blocked due to Outdated or Empty Geom .. 91

7.2.6 Support .. 92

Template Builder User Guide - Version 3.1

5

7.3 Overview of Media Types ...93

7.4 Overview of Control Plugins ...95

7.4.1 Supported Viz Artist Control Plugins ... 95

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 6

•
•
•
•

1 Introduction
Template Builder lets you make customized templates using scene import or existing templates
from Viz Pilot's Template Wizard. This user guide shows you how to customize templates.

1.1 Workflow
A simplified version of the workflow follows below:

Scenes are made in Viz Artist.
The scenes are imported into Template Wizard, where templates are made.
Templates are edited and new templates can be made in Template Builder.
The template is saved in the Viz Pilot system and is available to newsroom and control room
systems for playout.

Info: A key feature is that you can add custom HTML panels to templates, giving full
control over the template through custom scripting and logic.



Note: Changes made to a template in Template Builder are not be available when opening
the template in Template Wizard.



https://docs.vizrt.com/viz-pilot.html

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 7

•
•
•
•

1.2 Related Documents
The templates customized in Template Builder can be used by other Vizrt products such as Viz
Pilot Edge, Viz Story and Viz Multiplay. For more information about all Vizrt products, visit:

www.vizrt.com
Vizrt Documentation Center
Vizrt Training Center
Vizrt Forum

1.3 Feedback
We welcome your feedback and suggestions regarding Vizrt products and this documentation.
Please contact your local Vizrt customer support team at http://www.vizrt.com.

http://www.vizrt.com/
http://documentation.vizrt.com/
http://www.vizrt.com/training/
http://forum.vizrt.com/
http://www.vizrt.com/

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 8

•
•
•
•

1.
2.
3.

4.

1.
2.
3.

4.

2 Setup And Configuration
This section covers the following topics:

Opening Template Builder
Configuring Preview Server
Specifying a Graphic Hub Endpoint
Monitoring Graphic Hub Status

For software and hardware requirements, please check the Viz Pilot Edge User Guide.

2.1 Opening Template Builder
Template Builder opens as a web application in your default browser.

The URL to access Template Builder, if hosted on the Pilot Data Server, is: http://pds-
hostname:8177/app/templatebuilder/TemplateBuilder.html.

2.2 Configuring Preview Server
Preview Server manages one or more Viz Engines, providing frames for thumbnails and snapshots
in an ongoing preview process.

Preview Server must be configured in the Pilot Data Server:

Access the Pilot Data Server Web Interface: http://pds-hostname:8177.
Click the Settings link.
Select the preview_server_uri setting, and add the URL for the machine on which you
installed Preview Server (http://previewserver-hostname:21098).
Click Save.

2.3 Specifying A Graphic Hub Endpoint
If you are using multiple Graphic Hubs, the one used to store your scenes must be configured in
Pilot Data Server:

Access the Pilot Data Server Web Interface: http://pds-hostname:8177.
Click the Settings link.
Select the graphic_hub_url setting, and add the URL for the machine on which your scenes
are stored (http://gh-hostname:19398).
Click Save.

Note: All applications with a connection to the database now have access to Preview Server.

Note: This connection needs authentication from the Pre-authenticated Hosts part in the
Search Providers settings.



http://docs.vizrt.com/viz-pilot-edge.html

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 9

2.4 Monitoring Graphic Hub Status
Since some users have multiple Graphic Hubs (GHs) for design, distribution, testing and
production, green icons at the bottom of the interface show you which GH and which database you
are currently connected to:

Note: GH REST status info is based on the graphic_hub_url parameter mentioned above,
not Graphic Hub's search provider settings.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 10

•
•
•

•
•
•
•

•
•
•

3 Creating And Managing Templates
Create and manage templates using Scene Manager and other features.

This section covers the following topics:

Creating a New Template
Opening a Template
Template Management

Manage Scenes
Advanced Dialog
Template Compatibility
Concept Manager

3.1 Creating A New Template
Click in the upper right corner of Template Builder.
The Scene Manager window opens.
Click +Add Scene.

The Scene Browser appears, containing all of the scenes stored in the Graphic Hub to which you
are connected:

Note: In Template Builder, a template must contain at least one scene. 

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 11

•

•

•

•

Enter a search term or browse the folder structure. Once you have selected the correct scene
or scenes, press OK to add them to the template.
If you want to assign the scene to a different concept, right-click it and select Replace
concept:

Select an existing concept or enter a new Concept name and click Ok.

Click Apply to go back to the template with its auto-generated fields.

Note: The Graphic Hub containing your scenes is specified through the graphic_hub_url
setting in Pilot Data Server.



Note: New concepts are inactive by default, which means they are not visible in other
applications. Once the template is saved, use the Concept Manager (see below) at
the top right of the interface to activate them.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 12

•
•

•

3.2 Opening A Template

Click the Home button to show templates available within the Pilot system.
Use Concepts and Tags to filter templates. The search can also be narrowed down by
searching for the template name in the Type to search... field at the top of the dialog.
Double-click a template to open it.

3.3 Template Management

3.3.1 Manage Scenes

Behind a template, there are always one or multiple scenes. The control fields of these scenes are
uses to auto generate a fill-in form for the template. To enter Scene Manager for the template,
click Manage scenes on the toolbar. When done with changes, click either Discard or Apply.

3.3.2 Advanced Dialog

The menu at the top center of the interface allows you to open the Advanced dialog:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 13

•

•
•

•

•

Active: To mark this template as a draft or not. A template marked as a draft means that this
template is not visible in Viz Pilot Edge.
Legacy: Decides how the template behaves in Viz Pilot Director:

Enabled: In Viz Pilot Director. Legacy templates open in the built-in template window.
See below.
Disabled (default): In Viz Pilot Director 8.6 or later, the template opens in Viz Pilot
Edge.

View and edit the Tags of the template.

3.3.3 Template Compatibility
Mixed workflow: To use a template in both Template Wizard and Template Builder, the template
must be created in Template Wizard. It behaves as a regular template with a built in old-style UI in
Template Wizard and Viz Pilot Director. The template can also be opened in Template Builder, and
a HTML based UI can be added to the template. Thus, the template can have two UI
representations, one for classic Viz Pilot, and one for the HTML based Viz Pilot Edge workflow. The
template is then automatically marked as Legacy in Template Builder.

HTML based only: If a template is created in Template Builder, by default, it is not marked as
Legacy. This means that he template is opened in the Pilot Edge HTML client when opened from
Viz Pilot Director. The template has limited functionality in Director, and can only be used to fill in
data and save data elements. Neither playout nor macro commands work on this type of template.

HTML based legacy template: If a template is created in Template Builder, and marked as Legacy,
the template can be opened in Director in the built in window, but with no auto generated form for
the graphics fields and with limited support. The template has an auto generated dummy form
that does not contain any of the fields of the scene, and it cannot be saved. The macro commands
and playout, work.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 14

3.3.4 Concept Manager
The Concept Manager is available by clicking the icon on the top right toolbar:

The Concept Manager allows you to mark Concepts as active or inactive (draft):

Info: It is possible to open this template in Template Wizard, remove the script and the
labels with the messages, and add the fields of the scene manually. Then the template
behaves just like the Mixed workflow mentioned above.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 15

•

Inactive concepts will not be visible in Viz Pilot Edge. The templates of this concept will also be
hidden from the Viz Pilot Edge user. Setting a concept as inactive means it can be in draft mode
for the Template Builder user.

Once it is activated, it is visible to the Viz Pilot Edge newsroom users.

See Also:
Transition Logic and Combo Templates

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 16

•
•
•
•
•
•
•

4 Customizing Templates
For simple use cases, the auto-generated template is often usable out-of-the-box after importing
scene(s). Though, in a professional newsroom workflow, advanced customization is needed. There
are numerous of ways a template can be customized in TemplateBuilder:

Template Scripting
Template Layout
Template Fields
Custom HTML Templates
Auto-generated Title
Environment Variables
Execution Logic Editor

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 17

•
•
•

•
•
•
•
•

4.1 Template Scripting
Dynamic or advanced customization of the fill-in form is needed, and Viz Pilot Edge allows this
through template scripting.

Scripts are written in TypeScript, and access the template via a provided Script API named vizrt .

It allows users to customize how templates look and behave, as well as fill in values from external
sources. This section describes how to use the script editor, and access the values of the fields
supported in Template Builder.

These are the following topics:

The Script Editor
Initialization
Field Access

Accessing Concepts & Variants from Scripting
External Sources
Image Metadata
Read Only Fields
Unsupported Fields

4.1.1 The Script Editor
The script editor is available in the "Fill-in Form" tab of Template Builder.

Info: Check out the Quick Start Examples for some quick hands-on experience.

•
•

Note: For testing API endpoints, please use the following:
HTTP://<PDS-HOST>:8177/testing/fakepremierleague/
HTTP://<PDS-HOST>:8177/testing/fakepersonsearch/



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 18

It can be used docked or undocked from the Template Builder. While undocked, you can adjust the
size of the window for a smoother experience.

There is a search option to search within the script code, and you can access it by clicking the

icon within the script editor.

The script editor also provides error messages depending on the problem. It shows compile or run
time errors.

Compile Error

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 19

Runtime Error

When trying to catch a runtime error, it is recommend that you name a function with a string
value. By naming a function, this name is used in the error message to indicate where the error
came from.

In the following example, if you catch an error, the string used under "user defined name" is
shown in the error message:

In this case, you can just add the string value in your function error report so it shows in the error
message:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 20

•

•

4.1.2 Initialization
There are two global events that can be used to initialize the Fill-in Form:

onCreate: Called when template is opened in Viz Pilot Edge.

Example:

vizrt.onCreate = () => {
 // For example set startup values, initialize fields visibility, etc.
 Initialize()
}

onLoad: Called when an existing data-element is loaded in Viz Pilot Edge. The normal steps
are to initiate/refresh data each time you open a data-element.

Example:

vizrt.onLoad = () => {
 // For example reset or refresh values, etc.
 ResetForm()
}

4.1.3 Field Access
When using the scripting tool in the template, the individual fields must be accessed through the
global name space vizrt.fields (for example, vizrt.fields.$singleline.value).

Note: This event is not triggered when creating a new data-element from an existing
one.



Note: This event can potentially modify the data-element when opening, which
means it must be saved before being draggable/sendable to a NRCS.



Info: These events must be defined in the Template Builder's script, but they are not
triggered in Template Builder.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 21

•

•

•

•

•

The script executes when a graphic element is opened or created with the scripted template in Viz
Pilot Edge.

In Template Builder, the script is also re-loaded and restarted when there are changes made to it.

By typing vizrt.fields, the editor's autocomplete shows you the available fields to choose from.

You can read and write field values, as well as react to value changes from outside the script.

You can also access the properties error, hidden, readOnly, and tip of the vizrt fields.

onChanged: A property on fields that you can set as a function, and if you do so, this
function is called whenever the value of the fields changes, and gets the new value as an
argument . If this is not set, it is null.

readOnly: Read and write boolean access, to whether the field should be editable in the
form or not. If false , the field and its input elements are editable in the UI. If true , they are
read-only and greyed out in the UI, but are accessible, saved and loaded as part of the
payload.
hidden: Read and write boolean access, to whether the field should be editable in the
form or not. If false , the field and its input elements are present and visible in the UI. If
true , they are hidden from the UI but are accessible, saved and loaded as part of the
payload.
error: Read and write string access, to an error to display for this field. It overrides other
error messages associated with the field when non-empty (e.g. errors due to input length or
regex constraints specified in the field definition).
tip: Read and write string access, to a tip to use for this field. It overrides the tip specified in
the field definition when non-empty.

Note: Writing $singleline.value instead of vizrt.fields.$singleline.value does not work, and
gives a Compile Error.



Note: Changes done to field values by the template script do not trigger the
onChanged function to be called.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 22

Typescript lets you access fields using known names (for example, vizrt.fields["$field_2"]), but
does not allow expressing the field names using variables (for example, vizrt.fields["$field_" +
num]), as it is unable to determine whether the field name is valid and what type the field is. To
overcome this, the type checking associated with vizrt.fields can be locally ignored by using the
any type. You may do so inline using for example (vizrt.fields as any)["$field_" + num], or storing
it as a new variable, as shown in the example below.

Accessing Concepts & Variants from Scripting
To access the information from concept and variants fields, because they contain dashes, you
must use square brackets, as shown in the example below.

//When the Concept is changed, get its value and put it in a text field with field
name info1
vizrt.fields["$-concept-variant-choice"].$concept.onChanged = () =>
{vizrt.fields.$info1.value =vizrt.fields["$-concept-variant-choice"].$concept.value }

Note: Dashes cannot be used in Typescript with the dot syntax, instead you can use
vizrt.fields["$01-week"] syntax to be able to access it.



Note: Be aware that when using an object cast to any, the script editor isn't able to help
you catch errors like setting a boolean value to a string field, or even trying to access a
field that does not exist..



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 23

//When the Variant is changed, get the value and put it in a text field with field
name info2
vizrt.fields["$-concept-variant-choice"].$variant.onChanged = () =>
{vizrt.fields.$info2.value =vizrt.fields["$-concept-variant-choice"].$variant.value }

External Sources
Whether on template load, or as a reaction to a field change, you can initiate HTTP, HTTPS or REST
calls to fetch values from third party or external services.

This can easily be done via the browser's built-in fetch API: https://developer.mozilla.org/en-US/
docs/Web/API/Fetch_API.

Image Metadata
Every image has some amount of metadata attached to it, and with this field you are able to access
this metadata by using the script editor.

You can upload images and the corresponding metadata to asset source servers. By accessing an
image's metadata, you can auto-fill the name field within a template or alternatively display or hide
an image that might be copyrighted.

How to Use the Image Metadata
If you are using a newly created template, simply choose any image, and then query that image's
metadata in the script editor by querying the image's metadata map. With an existing template,
which already contains an image that was created before the 2.4 version of Template Builder and
Pilot Edge, then simply click on the current image and re-select it from the asset selector, or
alternatively select another random image and then select back the original one. Once this is done,
you can proceed by querying the image's metadata map.

This example checks if imageName has a metadata key named test and then tries to get the value
of that metadata key. You can use the script syntax shown below:

let hasMetadataKey: boolean = vizrt.fields.$imageName.metadata.has("test") //true if
the metadata contains the key test
let metadataValue: string = vizrt.fields.$imageName.metadata.get("test") //it is set
to the value it has in the metadata, otherwise it is undefined

This code example reacts when a new image is selected. When the image2 field gets assigned a
new image, it tries to get the description from the metadata associated with the new image, and
set it into the text field img2_txt. If the description does not exist, a message displays explaining
it was not found.

Info: See the Quick Start Examples section for a short example of a REST call triggered by
an onChanged event.



Note: Image scripting metadata currently works for images retrieved from the following
asset source servers: Vizone, Vos, GH and OMS.



https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 24

vizrt.fields.$image2.onChanged = () => {
 if (vizrt.fields.$image2.metadata != undefined) {
 let keyName = "description"
 let a = vizrt.fields.$image2.metadata.get(keyName) // get the metadata value
that has the given key
 if (a != undefined) {
 vizrt.fields.$img2_txt.value = a // if the value is not undefined, then
set it into a string field within the template
 } else {
 vizrt.fields.$img2_txt.value = "The key '" + keyName + "' was not found
inside the metadata map"
 // Alternatively, set it to nothing: vizrt.fields.$img2_txt.value = ""
 }
 }
}

To access the entire unprocessed/unparsed metadata file, use wholeMetadataString. This can be
useful for debugging, or for finding the keys available in the metadata:

let rawMetadata:string = vizrt.fields.$imageName.metadata.get("wholeMetadataString")

Image Metadata XML

An image's metadata is stored within asset source servers in XML format, and the XML metadata
structure should follow a simple field-value (key-value) structure. This is to guarantee that all the
metadata is correctly mapped and made accessible through the script editor.
However, since many image metadata XMLs are disorderly, a parser has been created to handle
most XML structures, although this has some consequences that should be made aware of. All
these example scripts are based on an image field named "image1".

Empty field-value pairs get added accordingly:

<field name="car"/>
<field name="color">
 <value/>
</field>

// Accessing these can be done using:

let a = vizrt.fields.$image1.metadata.get("car")
let b = vizrt.fields.$image1.metadata.get("color")

// Both a and b will be ""

Nested structures get stored based on their hierarchy, with "/" being the parent-child separator:

<field name="access-rights">
 <field name="user-rights">
 <value>true</value>

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 25

•
•
•
•
•

 </field>
</field>

// To access the user-rights value:

let a = vizrt.fields.$image1.metadata.get("access-rights/user-rights")

// a will then be set to true.

Any fields with duplicate names get assigned a unique name with an incrementing suffix:

<field name="file-link-id">
 <value>id123</value>
</field>
<field name="file-link-id">
 <value>id456</value>
</field>
<field name="file-link-id">
 <value>id789</value>
</field>

Access duplicate names like this using the incrementing suffix:

let a = vizrt.fields.$image1.metadata.get("file-link-id")
let b = vizrt.fields.$image1.metadata.get("file-link-id(2)")
let c = vizrt.fields.$image1.metadata.get("file-link-id(3)")

a will be "id123"
b will be "id456"
c will be "id789"

Read Only Fields
Some fields are currently supported only for read-access by the scripting API. These are the
following:

Duplet
Triplet
Map
Image
Video

For the Image and Video fields, the script is able to access some properties (their height, width,
etc.) from the file.

The following example shows how to retrieve the image height:

vizrt.fields.$ImageInfo.value = "No image info";

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 26

vizrt.fields.$image.onChanged =() => {
 vizrt.fields.$ImageInfo.value = 'Image changed';

 var v = vizrt.fields.$image.value;
 if(v != undefined && v.height != undefined)
 vizrt.fields.$ImageInfo.value = v.height.toString();
 else
 vizrt.fields.$ImageInfo.value = "No image info";
}

Unsupported Fields
As of now, all List and Table fields are unavailable from the scripting API.

Note: Because images and videos can be undefined, they must be checked before they are
used.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 27

•
•

•
•

•
•
•

1.

4.1.4 Quick Start Examples

Automatically Clear Title Field
Fetch Title from REST Service

In Viz Artist, create and save a regular Viz Pilot template scene with two text control fields:

name
title

Make sure to uncheck Use formatted text in the Control Text properties for both fields, which is
easier to work with.

Automatically Clear Title Field
In this example, the following basic features are shown:

Script that executes on template load.
Reacting to user changes to the fields.
Modifying fields from the script.

Create a new template based on this in Template Builder, by choosing Create a new
template and adding your newly created scene via Add Scene.

Info: In this section you can find short examples of how to use the scripting functionality.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 28

2.

3.

Go to the Fill-in form tab, which should look like this:

In the scripting tab, you can verify that the template fields are available by
typing vizrt.fields and looking at the autocompletion:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 29

4. Enter the following in the upper right script panel:

This script causes the template to hide the title field when the template loads. You should
see this change applied immediately on the payload editor preview:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 30

5.

6.

•
•

The script is now extended to react to changes made in name. When name is
empty, title should be hidden and empty, but not otherwise:

The title field will now hide and clear when name is cleared and reappear when something
is entered into name.
Save the template and observe this action in the Pilot Edge client.

Fetch Title from REST Service
In this example, the script will automatically fill the title field by fetching it from a REST endpoint.

This illustrates more advanced features:

Using the standard browser fetch API.
Changing field values based on responses from other services.

Using the same template as the example above, or creating a new one from the same scene, delete
anything in the script tab and write the following:

Note: Fields with dashes in their name, cannot be used in Typescript with the dot syntax,
instead you can use vizrt.fields["$01-week"] to be able to access it. This means, when
creating a new scene, you should use camel case notation or underscore (for example,
01thisIsMyField or 01_week), to access the field with the dot syntax.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 31

Remember to replace "HOSTNAME" with the hostname of your Pilot Data Server. In a default install,
this should be showing in your Template Builder address bar.

In the following example using Google Chrome, the hostname would be "stephanie", marked in
blue:

If everything is working correctly, you should see an autogenerated title appear when you set or
change the name field.

In this case, a specially provided test endpoint was used on the Pilot Data Server, but you can point
to any other REST resource. Also, you are not constrained to the fetch API used. All standard
JavaScript network mechanisms can be used.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 32

•

•

•

•

•
•

•
•
•

1.
2.

4.2 Template Layout
Editing a template's layout makes it easy to create fill-in forms for journalist. With drag & drop
functionality, creating new fill-in forms is quick and easy.

When a template is created, only the auto-generated form is displayed. The layout of this
form cannot be modified.
Adding new tabs enables you to quickly create additional fill-in forms based on selected
fields.
When adding new tabs, the default auto-generated form is accessible in the All tab. The
auto-generated tab can be hidden from the Pilot Edge user.
In the additional tabs, it is possible to resize, move, edit, add and delete fields quickly.

This section covers the following topics:

Creating a Template
Adding Alternative Layout Forms

Adding, Moving, and Resizing Fields
Renaming, Deleting and Reordering Tabs
Hiding and Showing the Auto-Generated Tab

Follow the steps below to get started.

4.2.1 Creating a Template
Open or create a new template and add a scene.
Click Fill-in form. The default view is then displayed:

The left window will contain all the fields in this template. These fields are auto-generated

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 33

1.

2.
3.

1.

based on the exposed control plugins in the scenes on which this template is based.
The middle view contains the fill-in form(s) for this template. The toolbar has the following
functions:

 Add a new Tab (fill-in form). All tabs are visible in Viz Pilot Edge.

 Enter layout edit mode. Only enabled in additional tabs, not enabled for the
default auto-generated All form. Click this to be able to move and resize fields.

 Allow temporary editing of read-only fields. This is only when working with the
template in Template Builder, it is not stored anywhere.

 Reveal hidden fields. In the auto generated All mode, also some system fields
are revealed, for instance the title, the auto generated title, the resolved concept and
variant.

 Refresh HTML panel(s) in the template or the full HTML panel if the template is
represented by a custom HTML panel.

4.2.2 Adding Alternative Layout Forms

To create an additional template representation, click the Create New Tab button :

Enter a new title for your new tab and click OK:

There are 3 ways of adding fields to the new form by selecting one of the following options:

The All option in the dialog box, then all fields in the auto-generated form are added to the
new form.
The Selected option will include only selected fields in the new form.
None will create a new, empty form.

Adding, Moving, and Resizing Fields
Click an additional tab (not the All tab).

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 34

2.

3.

Use drag and drop from the field view to add fields to the fill-in form:

Move and resize fields by clicking the ruler button to enter edit layout mode, and then
grabbing the edges of each field:

Renaming, Deleting and Reordering Tabs
Right click an additional tab (not the auto-generated All tab) to reveal the following functionality:

Now you can rename, reorder or delete each tab.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 35

•

•

Hiding and Showing the Auto-Generated Tab
You can hide the auto-generated All tab from the Viz Pilot Edge user:

Open the Advanced dialog by clicking the breadcrumbs on the top toolbar:

Select Hide generated form and click Close:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 36

•
•
•

•
•
•

•

4.3 Template Fields
The left window in Template Builder contains the field tree. The initial fields reflects the exposed
Control plugins in the imported scene(s), but it is possible to add fields that are not bound to
plugins in the scene. Each field has a type, and numerous properties that alters the behavior of the
field.

Fields can be restricted: for example, to only include text with a certain amount of characters,
numbers within a specific range, or media placeholders for media assets, or be displayed as
options in a drop-down list.

The fields can be manipulated in various ways to decide how data is entered into the field. See
Data Entry.

Field representation in the UI can also be replaced with an inline HTML panel.

Field Tree
Sub Fields
Text Fields

Field Properties
Image Constraints
Default Search Parameters

Field Types

4.3.1 Field Tree
The Field Tree contains the Field ID and Label, which are also shown in the Fill-in form. The icon
beside each line in the tree indicates the Type of content in the field.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 37

Fields can be rearranged by drag-and-drop within the Field tree. Right-click a field to open a menu
where additional fields and HTML panels can be added.

Sub Fields
In the Field tree we can find the main fields and the sub fields:

In this case, sub fields are Control Plugin properties of the main field. In Viz Artist, the scene
designer has chosen to expose kerning and font for the main text field:

Info: Only fields created in Template Builder can be deleted and given a new ID. Fields
bound to the scene have a fixed name and cannot be deleted.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 38

•

Sub-fields can also be used in Viz Artist and Template Builder to group fields. This is important
when using Feed Browser functionality to bind multiple child fields to the parent field:

In Viz Artist, the three Control Plugins above are named 1.name, 1.role and 1.title in the Viz Artist
scene. When using the dot naming notation in Viz Artist, Graphic Hub and Template Builder will
group these fields as parent/children.

Text Fields

Multi-line text: Multi-line text supports standard ASCII characters. It does not support any
type of text formatting and does not convert any text. It keeps the text as it was typed.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 39

•

•

•
•
•
•
•

•

•

•
•
•
•

•

Single-line text: A single-line text field converts any white-space to space. White-space
includes space, tab, newline, etc. Single-line text converts any white-space to the space
character you get by pressing the spacebar KEY only. For Template Builder, this is also a text
field with a single-line entry, unlike multi-line text.
Formatted text: Formatted text refers to the ability to hold formatted text. For example, a
formatted text field can show that some of the texts are bold or italic, for example, when a
field has Rich-Text functionality.
Although such a display is not yet completely supported (no Rich-text support yet) on our
payload text field, formatted text is used so that if a field has a formatted type text created
in Viz Artist, the field type can also be selected in Template Builder.

4.3.2 Field Properties
The Field Properties window is located below the Field Tree window. It displays the properties of a
selected fields in the Field Tree.

Multi-selection: If several fields are selected in the Field Tree (CTRL + click), a subset of the field
properties is displayed. If the selected fields have different field property values, the Field
Properties window displays a multiple values state. Changes made in the Field Properties window
are immediately applied to all the selected fields.

Note that the set of properties displayed depends on the type of the field. The following properties
are available:

Label: Specifies the label of the field in the Fill-In Form.
Tip: A tooltip text can be entered to provide more information about the field.
Read-only: The field remains visible, but is grayed out in the Fill-In Form.
Hidden: Hides the field in the Fill-In Form.
Publishing variable: Viz Story specific property. Can be used to link the field to a system
field affecting the playout or publishing of the template.
Regular expression: Defines constraints for the value in the field, using Regex. See the table
below for examples.
Preview point link: If set, clicking on/selecting the field will also show the given preview
point in the Preview.
Type: The field type. might be changed here.
Max length: Text fields only, see comments in table below.
Single-line: Formatted text fields only, see comments in table below.
Data entry: Set how data is entered into the field. Drop-down list of all field types. For more
information, see Data Entry.
Read-only and Hidden expression: Basic Javascript eval expression that decides whether a
field should be hidden or read only. This can be used instead of scripting to build conditions
based on values in other fields. See the table below for examples.

Info: A Regular Expression (or Regex) is a pattern (or filter) that describes a set of strings
that match the pattern. In other words, a regex accepts a certain set of strings and rejects
the rest.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 40

Image Constraints
For fields of type Image, it is possible to set image constraints to force the Viz Pilot Edge user to
select an image having the correct aspect or a minimum resolution.

Specify standards for image quality and size using either or both of the following:

Regex Description Example

[a-zA-Z]+ Match a word containing only
letters.

MyLongWord

^[A-Z][a-z\s]*$ Match a string starting with
capital letter containing only
lowercase letters and space.

This is a sentence

\d+ Match a sequence of digits. 123489

\b[A-Za-z0-9._%+-]+@[A-Za-
z0-9.-]+\.[A-Za-z]{2,}\b

Match a typical email address. joe@microsoft.com

•
•

Info: Read-only and Hidden expressions support Javascript notation to evaluate an
expression. It supports field lookup, arithmetic and logical operators.

Field references must be enclosed in double curly brackets, for example {{field01}}.
Text fields in the expression must be of type Single Line.

Expression Description

{{L301}}=="HIDE" || {{selector}}<2 Match if the L301 field value is "HIDE" and
the numeric field selector is less than 2.

({{V01}} / {{V02}}) *100 < 50 Match if the numeric field V01 is less than
50% of V02.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 41

•

•

•

1.
2.

3.

Minimum size of the image (pixels): Number of pixels (width or height), irrespective of
aspect ratio.
Aspect ratio: Any number describing the proportional relationship between the image with
and height.
Allowed error: Specifies a margin for the constraints when an image is selected.

Default Search Parameters
For the types Image, Video, Font, Geometry and Material, it is possible to define default search
parameters that will be used by the media search that is launched when you click on the field:

Click the Set button to open a media search window.
Enter text in the search field, selecting whether to show all items or to limit by time from the
Show drop-down list, and/or selecting a tag from the Tags drop-down.
Save by clicking Use current search parameters.

4.3.3 Field Types
The type of content allowed in the field in Default Values is set by using the drop-down list under
Type. Depending on the type selected, different sub-options become available, as specified in the
table below.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 42

There are two main field type categories: scalar and list. Fields of all types apart from the list type
are referred to as scalar fields. Fields using the list type are referred to as list fields.

The following types are available:

Type Ic
o
n

Media Type
(XSD Type)*

Comments

Empty Makes the field unavailable in the Fill-in form. Typically used as
a container for other fields.

Multi-
line text

text/plain
(string)

Max length: Sets the maximum number of characters allowed in
the field.

Single-
line text

text/plain
(normalizedSt
ring)

Max length: Sets the maximum number of characters allowed in
the field.

Formatt
ed text

application/
vnd.vizrt.richt
ext+xml

Max length: Sets the maximum number of characters allowed in
the field.

Single-line: Check this box to specify that the rich-text editor
allows one line of text only.

Boolean text/plain
(boolean)

Creates a checkbox that has two states: true and false.

Integer text/plain
(integer)

This field is an integer field.

Minimum: Sets the minimum value allowed in the field.

Maximum: Sets the maximum value allowed in the field.

Decimal text/plain
(decimal)

This field allows decimal numbers.

Minimum: Sets the minimum value allowed in the field.

Maximum: Sets the maximum value allowed in the field.

Date
and
time

text/plain
(dateTime)

Use the Date Chooser in Default Values to select date and time
in this field.

Date text/plain
(date)

Use the Date Chooser, or the individual editors for day, month
and year in Default Values, to select the date in this field.

Two
number
s
(duplet)

application/
vnd.vizrt.dupl
et

This field allows two numbers (decimal numbers are allowed).

Minimum: Sets the minimum value allowed for both numbers.

Maximum: Sets the maximum value allowed for both numbers.

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#normalizedString
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#date

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 43

Type Ic
o
n

Media Type
(XSD Type)*

Comments

Three
number
s
(triplet)

application/
vnd.vizrt.tripl
et

This field allows three numbers (decimal numbers are allowed).

Minimum: Sets the minimum value allowed for all three
numbers.

Maximum: Sets the maximum value allowed for all three
numbers.

Image application/
atom+xml;
type=entry;m
edia=image

Makes the field available for an image.

Image Constraints: Enable this option if you want to set
constraints on the image.

Minimum Size of the image (pixels): Specifies the minimum
allowed image dimensions in pixels. Both width and height must
be at least this big.

Aspect Ratio (width x height): Specifies the aspect ratio of the
image.

Allowed Error (%): Specifies the maximum stretch limit for both
the width and height of the image, in relation to its defined
aspect ratio.

Video application/
atom+xml;
type=entry;m
edia=video

Makes the field available for a video.

Font application/
vnd.vizrt.viz.f
ont

Makes the field available for a font.

Geomet
ry

application/
vnd.vizrt.viz.g
eom

Makes the field available for a geometry.

Material application/
vnd.vizrt.viz.
material

Makes the field available for a material.

Map application/
vnd.vizrt.curi
ous.map

Makes the field available to present and edit a map.

Custom Lets you freely specify the media and XSD type.

https://tools.ietf.org/html/rfc4287#section-4.1.2
https://tools.ietf.org/html/rfc4287#section-4.1.2

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 44

•

•

Type Ic
o
n

Media Type
(XSD Type)*

Comments

List

Lists may be modified by adding and removing columns in the
Field Tree.

To add columns to a list - right-click the columns node
under the list field node in the Field Tree and select Add
column.
To remove a column - select the column field in the Field
Tree and press Delete, or right-click it and select Delete
field.

Minimum number of rows: Defines the minimum allowed
number of rows in the list.

Maximum number of rows: Defines the maximum allowed
number of rows in the list.

Color text/
vnd.vizrt.colo
r

Text (for example: #140E7E or rgba(255, 0, 0, 1)).

* For more information on media types, see: Overview of Media Types.

Note: List fields are fundamentally different from scalar
fields. It's therefore not possible to change a list type to
a scalar type and vice versa.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 45

•
•
•
•

•
•
•

•
•

4.3.4 Data Entry
The Data entry field property specifies how users should fill in field values.

Manual
Radio Buttons and Drop-down
Double drop-down
Enable Feed Browser

Feed URL
Select from Feed Item
RSS Mapping

Feed-backed Drop-down
Dynamic Drop-down

Manual
Selecting Manual in the Data entry drop-down list does not give access to any additional settings
for the field. The default is for the input to the field to be a text box with manual input.

Radio Buttons and Drop-down
Selecting drop-down or one of the radio button options lets you see the content in a static list,
which may in some cases make it easier and less error-prone to fill the template in with the right
content.

Example: OMO Plugin
When a Control Object moving (Omo) plugin is accessible in the template, scenes using Omo
plugins are originally presented as integer values for the different elements in the Fill In Form. The
drop-down and radio buttons options can assign text to these values to make it easier to select the
right element.

The example below contains a scene with a sponsor logo having different display options in the
graphics. For the Omo plugin, these options correspond to the values 0, 1 and 2 respectively.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 46

•
•
•

•

•
•
•
•

To assign text to these values:

Select the Omo field in the Field Tree.
Select Horizontal radio buttons in the Data entry drop-down list.
Add alternatives in the inline list editor:

The Omo field in the Fill In Form now contains a drop-down list or radio buttons containing
the alternatives created above as text, as opposed to an integer field where the user would
have to remember which integer corresponds to which position.

Double drop-down
With the Double drop-down it is possible to add a two-level selection, letting you set multiple sub-
choices for each primary choice.

For example, if the choices list different countries, sub-choices could list cities in each country.

Mark the desired Field ID in the Field Tree.
Select Double drop-down in the Data entry field.
Fill in the primary choices in the inline table.
For each primary choice, enter the table editor and add sub choices.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 47

•

•

•

•
•

•

•

A new table for sub alternatives appear. Fill the table and click back when complete:

Instead of a text field in the Fill In Form, the field now contains two drop-down lists: the
main choices, which in this case is a list of countries, and sub-choices, with
corresponding cities.

Enable Feed Browser
This options specifies that the field should get its value from a property of an Atom or RSS feed
entry. If the field is a sub-field of another field that has enabled feed browser, the option is named
Parent feed browser. Otherwise, it is named Enable feed browser.

If the Enable feed browser option is selected, a Browse button appears next to the field in
the fill-in form.
Click Browse to open the Feed Browser dialog.
In the Feed Browser, the items of the feed are presented (with thumbnails, if available), and
one of the entries can be selected.
Information from the selected item is used to fill in the feed browser enabling field and its
sub-fields.
Alternatively, if Feed-backed drop-down is selected, the feed is presented as a drop-down
instead of a feed browser.

Feed URL
Specify the feed URL for the field. The URL must be accessible from the Viz Pilot Edge browser and
lead to a valid Atom XML or RSS feed:

Note: In order to be able to fill in multiple fields from a single selection in the feed
browser, fields must be sub-fields of the field that enables the feed browser.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 48

•
•
•
•

•
•

•

•

•

•
•
•
•
•

Select from Feed Item
This option binds the element of a feed item (title, link, content etc.) to the value of the current
field. This is a 1:1 relation between the feed item and the field value, but it is fully possible to bind
a feed item to multiple fields in the template. For example, if you select a story from a feed and
title, content, author and image is applied to the template. To accomplish this, the fields in the
template need to be grouped under a parent field. See Sub Fields for more information on this.

These are the fields in Atom/RSS that can be linked to:

<Not linked>: Not linked to the feed item, and must be filled in manually.
Content: Linked to the content of the atom:content element in the atom entry.
Title: Linked to the content of the atom:title element in the atom entry.
Link: Linked to the href attribute of the atom:link element in the atom entry. Which link
entry to pick depends on the Link-rel in atom entry property and the type of the field (the
first link with a correct rel attribute and a type that matches the type of the field is chosen).
Entry: Linked to the atom entry itself.
Author name: Linked to the content of the atom:name element inside the relevant
atom:author element, if the entry itself contains an atom:author element that is used.
Otherwise, the atom:author element of the feed is used.
Author e-mail: Linked to the content of the atom:email element inside the
relevant atom:author element, if the entry itself contains an atom:author element, that is
used. Otherwise, the atom:author element of the feed is used.
Author URI: Linked to the content of the atom:uri element inside the relevant atom:author
element, if the entry itself contains an atom:author element, that is used. Otherwise, the
atom:author element of the feed is used.
Contributor name: Linked to the content of the atom:name element inside
the atom:contributor element in the atom entry.
Published: Linked to the content of the atom:published element in the atom entry.
Updated: Linked to the content of the atom:updated element in the atom entry.
Thumbnail: Linked to the url attribute of the media:thumbnail element in the atom entry.
Summary: Linked to the content of the atom:summary element in the atom entry.
Link-rel in Atom Entry: Only available if Link is selected in the Select from atom entry

property. It specifies the rel attribute of the link element in the atom entry.

Note: Internet servers can have strict CORS policies denying access to their feed from
within Viz Pilot Edge.



Note: The options available for a given field depend on the type of the field (the atom
namespace prefix represents the http://www.w3.org/2005/Atom namespace, and the
media namespace represents the http://search.yahoo.com/mrss/ namespace).



Note: A linked field may also be filled in manually if it is not hidden or read-only.

http://www.w3.org/2005/Atom
http://search.yahoo.com/mrss/

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 49

RSS Mapping
The feedbrowser in Template Builder works with Atom XML, but also supports a minimal mapping
from standard RSS items according to the RSS 2.0 specification: https://www.rssboard.org/rss-
specification.

The media namespace xmlns:media="http://search.yahoo.com/mrss/ is specified in https://
www.rssboard.org/media-rss.

RSS Template
Builder

Comment

<title> Title

<description> Summary

<pubDate> Updated,
Published

RSS has only one field when the item is
published.

<author> Author e-mail In RSS the <author> element is strictly
specified as an e-mail address.

<enclosure type =" image/jpeg
">

Thumbnail, Link
rel="enclosure"

Both Thumbnail and Link with link
relation "enclosure" map to the
<enclosure> element in RSS.

<media:content type="image/
jpeg">

Thumbnail, Link
rel="content"

Both Thumbnail and Link with link
relation "content" map to the
<media:content> element in RSS.

<media:thumbnail> Thumbnail

Feed-backed Drop-down
The Choose from feed option works exactly like the Enable feed browser option, but displays the
results in a drop-down instead of in the feed browser window:

https://www.rssboard.org/rss-specification
https://www.rssboard.org/media-rss

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 50

•

•

•

•
•

•
•

Example: Link Image Field to Graphic Hub Folder
In this example we set up a link from an image field in the template to a Graphic Hub folder and
present the result in a sorted drop-down.

For the image field in the template, choose Feed-backed drop-down from the Data entry
drop-down.
The Feed URL should point to a Graphic Hub folder, and we add a search term parameter to
display only images. The URL is a part of the Graphic Hub REST API.
To quickly build a valid URL to a folder in Graphic Hub, follow these steps:

The {$GH} environment variable can be used to build the base URL part. This variable
resolves to the configured graphic hub on Pilot Data Server (for example, http://gh-
host:19398/).
Add the /files/ part of the path.
Add the UUID of the folder to the URL. This value can be copied from Viz Artist when
browsing in Asset view:

Add the ?/term=IMAGE to the URL.
In the Select from feed item drop-down, select Entry. This makes sure the complete Atom
entry is put into the field, making it playable for the Viz Engine.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 51

•
•

Click Sort by title to make the entries sorted.
The result should be a sorted drop-down with the images in the Graphic Hub folder.

Dynamic Drop-down
The Dynamic drop-down option allows you to create a dynamic drop-down with items read from
the value of another field. Whenever the (hidden) source field is changed, the drop-down items are
updated. See Dynamic Dropdown.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 52

•
•

•

1.

2.

3.
4.
5.

6.

7.

8.

a.
b.

Dynamic Dropdown
The entries of a dropdown can be dynamically populated based on the value from another (hidden)
field in the template.

The dropdown is populated with a JSON string from the source field.
Whenever the source field is changed, the dropdown is re-generated.

Use case: A natural workflow is to use the onLoad() event to fetch data and populate the

source field whenever data elements based on this template is opened in Viz Pilot Edge.

Example - onLoad() Populating a Dropdown
Follow these steps to create a dynamic, data driven dropdown that is populated each time a data
element is opened:

Create a new single-line text field that may be called source. This acts as the source of the
drop-down item (this field can be hidden).
Secondly, create another single-line text field, for instance called dropdown. This is where
your drop-down will be displayed.
In the dropdown single-line text field, click on it to have the properties displayed.
In the Data entry property, click on the Dynamic drop-down alternative.
Once the alternative is added, a new text field right below called Linked source field will
appear.
Fill the Linked source field with the name of your first single text field, which in this example
is source.
Within the source field, you can add data, either manually through the source field directly,
or from the script editor like shown below.
The data must be in JSON arrayformat: [{"label": "my label1", "value": "my value1"}, {"label":
"my label2", "value": "my value2"}, {"label": "my label3", "value": "my value3"}]

The label property is what is displayed in the drop-down.
The value property is what is being stored in the data element (this is eventually sent
to Viz Engine).

Populate Dropdown Source Field in onLoad() Event

In the example above, the teams.json file looks like this:

// onLoad() is executed each time a data element based on this1
// template is loaded in Pilot Edge2
vizrt.onLoad = () => {3
 fetch("http://myhost/app/teams.json")4
 .then(r => r.text())5
 .then(result => {6
 vizrt.fields.$source.value = result7
 console.log("Fetched: ", result)8
 }9
).catch(e => console.log("Error: ",e))10
}11

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 53

 [{"label": "Tottenham Hotspur", "value": "tottenham"}, {"label": "Liverpool",
"value": "liverpool"}, {"label": "Manchester City", "value": "mancity"}]

The format is a JSON array. This line can be pasted directly into the dropdown source field for
testing purposes.

The result looks like this (with the source field visible):

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 54

•
•
•
•

•
•

•
•
•
•

1.
2.
3.

4.3.5 Inline HTML Fragment
In the auto generated form and in the custom layout tabs, it is possible to add an inline HTML
fragment. The HTML content of this fragment is restricted to selected tags and attributes (see
below). It can be used to insert custom UI elements into the template. The HTML button can also
be linked to a click-handler in internal scripting, enabling the possibility to add special
functionality when the user clicks the button. The HTML fragments are stored inside the template,
so no need to host these fragments on a web server.

Note that external CSS styling is not supported. All styles need to be inline.

Adding an HTML Fragment
Adding an HTML Fragment to the Auto-generated All Tab
Adding an HTML Fragment to the Custom Layout Tabs
Z-order

Adding a Clickable Button
Example

Allowed HTML Tags and Attributes
White-listed Tags
Black-listed Tags
White-listed Attributes

Adding an HTML Fragment
The inline HTML fragment can be added both to the auto-generated All tab, and to the custom
layout tabs.

Adding an HTML Fragment to the Auto-generated All Tab
Right-click the field tree.
Select Add UI panel > HTMLfragment.
Add an ID to the new field.
The HTML fragment is now a part of the field tree for the All tab.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 55

1.
2.

In the field editor for HTML fragments the maximum height can be set and the actual HTML
can be entered. See below for HTML tag and attribute limitations for the HTML entered into
the box.

Adding an HTML Fragment to the Custom Layout Tabs
For the Custom Layout tabs, the UI components like HTML panels and HTML fragments, are not
part of the field tree on the left. They float inside the custom layout tabs and can only be reached
by clicking them in the UI.

To add an inline HTML fragment into a custom layout tab, follow these steps:

Create or select a custom layout tab.
In the middle toolbar, click the Add HTML fragment to current view button.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 56

3.

4.

1.
2.

3.

Enter an ID for the fragment.

A new HTML fragment is now added to the form.

Click the ruler to toggle edit and view mode: .

Z-order
In the current version of Template Builder, the only way of specifying the Z-order of the
components, is to add them to the form in the right order. The first component added to the form
is in the back layer, then each component added has a higher Z-index, and the last component
added is on top.

Adding a Clickable Button
Inside an HTML fragment, it is possible to add an HTML button. Scripting inside HTML fragments is
not allowed, but there is a way to add an event handler to the button to enable internal template
scripting on click.

Add a <button> in the HTML fragment.
Add a special attribute vizrt-click-name to the button, specifying how a click on this button
can be identified in internal scripting.
Add an internal script event handler for onClick and check for the value of the attribute
above.

In the HTML fragment:

<button vizrt-click-name="updatebutton">UPDATE</button>

The name can then be checked for internal template scripting:

vizrt.onClick = (name: string) => {
 if (name === "updatebutton") {
 // Do something
 }
}

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 57

Example
Inside the HTML fragment, you can basically use HTML tags without scripting nor links, and with
inline CSS styling. This is due to security and layout reasons, but there is quite a lot of flexibility
still.

<p style="color: red;">This text is red.</p>
<div style="background:black;width:200%;height:100px">Background black</div>
 <p style="position:absolute; top:100px; left:200px; background:white;
color:blue;font-size:26px;">
 I'm a big, blue, strong paragraph
 </p>

<button vizrt-click-name="updatebutton">UPDATE</button>

You then have the following panel:

Allowed HTML Tags and Attributes
Note that styling must be inline. Fragments do not support external CSS with the <STYLE> tag.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 58

White-listed Tags

ABBR
ADDRESS
AUDIO
ARTICLE
ASIDE
B
BDI
BDO
BLOCKQUOTE
BR
BUTTON
CAPTION
CITE
CODE
COL
COLGROUP
DATA
DATALIST
DD
DEL

DETAILS
DFN
DIV
DL
DT
EM
FIELDSET
FIGCAPTION
FIGURE
FOOTER
FORM
H1
H2
H3
H4
H5
H6
HEADER
HGROUP
HR

I
IMG
INS
KBD
LABEL
LEGEND
LI
MAIN
MAP
MARK
MENU
METER
OL
OPTGROUP
OPTION
OUTPUT
P
PICTURE
PRE
PROGRESS

Q
RP
RT
RUBY
S
SAMP
SEARCH
SECTION
SMALL
SOURCE
SPAN
STRONG
SUB
SUMMARY
SUP
TABLE
TBODY
TD
TFOOT
TH

THEAD
TIME
TR
U
UL
VAR
VIDEO
WBR

Black-listed Tags
These tags cannot be used in inline HTML fragments, either because they expose a security risk,
they conflict with the application, they need to be bound to script, or they make no sense inside
the <BODY> of an HTML fragment.

AREA
A
BASE
CANVAS
DIALOG

EMBED
HTML
IFRAME
INPUT
LINK

NAV
NOSCRIPT
OBJECT
PARAM
SCRIPT

SELECT
STYLE
SVG
TEMPLATE
TEXTAREA

TITLE

White-listed Attributes
These are the allowed attributes inside tags in an HTML fragment.

The attributes must be in lower case: alt, datetime, height, kind, label, name, src, srclang, style,
title, type, width.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 59

1.
2.
3.
4.

•
•

4.3.6 Inline HTML Panel
An HTML panel can be added to the template as part of the template customization workflow,
giving you full control through custom scripting and logic when building the template. The panel
is displayed inside an iframe and needs to be hosted on an external web server. Inside the custom
HTML panel, the use of the PayloadHosting API connects your panel to the fields of the template.

See samples/html_panels/README.html under the Template Builder installation folder for samples
and more details.

Adding an HTML Panel
The HTML panel can be added both to the auto-generated All tab, and to the custom layout tabs.

Adding an HTML Panel to the Auto-generated All Tab
Right-click the field tree.
Select Add UI panel > HTML panel.
Alternatively, right-click a field in the field tree and select Add HTML panel before/after.
Add a field ID to the new UI field.

The HTML panel is now a part of the field tree for the All tab.

Select the new field ID in the field tree to show its properties in the Field Properties window:

Adjust the size of the HTML panel shown in the fill-in form using the Height field.
In Source URL, enter the web address.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 60

•

1.
2.
3.

1.
2.
3.

•
•

The Hidden fields drop-down list allows you to hide available fields in the fill-in form.

Adding a HTML Panel to the Custom Layout Tabs
For the Custom Layout tabs, the UI components like HTML panels and HTML fragments, are not
part of the field tree on the left. They float inside the custom layout tabs and can only be reached
by clicking them in the UI.

To add an inline HTML panel into a custom layout tab, follow these steps:

Create or select a custom layout tab.
In the middle toolbar, click the Add iframe panel to current view button.
Enter an ID for the panel.

Using Environment Variables in URLs
When adding URLs to a template, either a full page custom HTML template URL or an URL to an
HTML panel inside an iframe, the URL can contain environment variables. These variables can be
set as URL parameters to the application, or picked up from the application's built in variables. For
example, if the URL to the application is http://mypds:8177/app/pilotedge/
pilotedge.html&$version=v1, then the value of URL parameters starting with the dollar sign are
available inside the application, and can be used for instance when specifying URLs to HTML
panels like this: {$}http://mywebserver/templatepanels/{$version}/mypanel.html.

Therefore, the full URL used by the application is http://mywebserver/templatepanels/v1/
mypanel.html. This way, the Viz Pilot templates using HTML panels or full custom HTML pages can
for instance switch to another version by changing the URL parameter to the application.

See Using Environment Variables for full description of this mechanism.

Browser Caching
You may experience browser caching behavior when trying to update and display changes in the
custom HTML template in Template Builder, this is standard behavior. Template Builder does not
control caching resources included in the HTML file itself.

To prevent caching:

Ensure the URLs to the resources are unique upon reload.
Optionally configure the web server serving the resources to send Expiry headers set to 0.
Disable caching on the browser side.

See also

Custom HTML Templates with examples of how to use custom HTML templates.
Using Environment Variables

http://mywebserver/templatepanels/{$version}/mypanel.html

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 61

•
•
•
•
•
•
•

•

•

1.

4.4 Custom HTML Templates
A few examples of how to create HTML templates are shown below:

Setting Up a Simple Custom HTML Template
Full Screen for Custom HTML Panels
Connecting a Custom HTML Template to a Viz Pilot Template
Connecting a Custom HTML Template to a Viz Pilot Template - Advanced
Creating a List of Functions Where You Can Bind Fields
Redesigning Concept/Variant Fields
Controlling the Auto-generated Fill In Form from the HTML Template

Use simple HTML <input> or <textarea> fields that contain an id="field_<fieldid>" that will
automatically have a bi-directional connection.
Take control of function mapping, and use JavaScript to do virtually whatever you wish.

4.4.1 Setting Up a Simple Custom HTML Template
The example below uses a template that shows the message Hello world when opened in a
browser.

The following three files, including the HTML template, must be located in the same folder (C:
\Program Files\Vizrt\Pilot Data Server\app\mytemplates\):

customTemplate_sample.html: The custom HTML template.

Note: To fully understand the workflow in these examples, some basic knowledge about
web technology (javascript, HTML, CSS) is required. Although detailed description of the
content in the files used will not be provided, API documentation bundled with the product
describes the API to which a web developer creating custom HTML templates has access.
This can be found at /app/templatebuilder/js/@vizrt/payloadhosting/dist/docs/
index.html



Note: jQuery is used in the examples for brevity, but is not mandatory when creating your
own HTML template.



Note: The following examples are a proof of concept and show only some of what can be
done using the customized workflow; more advanced use allows full control of the
template using custom scripting and logic. More samples can be found at /app/
templatebuilder/samples/html_panels/README.html



Note: HTML panels should refer to their own Javascript libraries instead of Edge libraries.
This is to prevent templates from breaking when Pilot Edge is upgraded to a new version.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 62

2.

3.

•
•

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js">
</script>
<script type="text/javascript" src="./payloadhosting.js"></script>
<script type="module" src="./customTemplate_sample.js"></script>
<head></head>
<body>
 <h1>Hello world</h1>
</body>

customTemplate_sample.js: The JavaScript part of the template.

$(document).ready(function () {
 console.log("Hello world");
});

payloadhosting.js: This connects everything. (Get it from http://<pilotdataserverhost>:8177/
app/templatebuilder/js/payloadhosting.js).

The URL http://<pilotdataserverhost>:8177/app/mytemplates/customTemplate_sample.html in
the image below points to the location of the .html file mentioned above:

Viewing a Custom HTML Template in Template Builder
Open a template and add an HTML panel as described here.
In the URL field, enter the URL of the custom HTML template. In this example, the URL from
the picture above.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 63

• Hello world now appears in the Fill In Form:

4.4.2 Full Screen for Custom HTML Panels
With full screen HTML, it is possible to replace the built-in template with a custom HTML
representation that replaces the whole template.

The URL to the custom HTML page must be set in the Advanced menu:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 64

•
•

Copy the URL that is in the html field of the template, paste it in the Advanced menu and click
Close. The template must be saved in order to have the custom HTML open in full screen the next
time.

4.4.3 Connecting a Custom HTML Template to a Viz Pilot Template
Following the example above, we can establish a two-way communication, or bind fields, between
the HTML template and the opened pilot template. This provides a simple way of setting up a
binding field. Add a new field to the template:

Right-click in the HTML panel field, choose Add field before/after and select Multi-line text.
Give it the ID 50.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 65

• A new field appears:

The <body> block in the custom HTML template (Template_sample.html) that previously

contained:

<body>
 <h1>Hello world</h1>
</body>

must then be replaced with:

<body onload="vizrt.payloadhosting.initialize()">
 <label for="field_50">My input field:</label>
 <input name="field_50" type="text" id="field_50">
</body>

Saving the HTML file and clicking Refresh HTML panels reloads the custom HTML template with the
changes just made. A bi-directional connection between the custom template and pilot template
has now been established. If you now type inside either the template or the field with ID 50, both
fields are updated at the same time.

Note: This way of binding fields works for any HTML fields that have value support,

typically <input> types and <textarea> .


Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 66

The JavaScript file automatically seeks input elements in the HTML that match the ID of fields

inside the template. Adding the id="field_50" to the <input> element inside the HTML

template is all that is needed for the two-way communication to be set up since a field with ID 50
was added above. An unlimited number of these binding fields can be established in the exact
same way, since they are mapped via ID.

4.4.4 Connecting a Custom HTML Template to a Viz Pilot Template -
Advanced

The following example will go more into detail than the example above, and use a more scripting
to give you 100% control over the template. The three files mentioned in the Setup a simple
custom HTML template example are also used here.

Note: Updating the <input> elements programmatically still sends data back and forth,

which is useful for automated data integration such as fetching live sports data.


Tip: Use the Hidden fields setting inside the HTML panel settings to prevent two editors for
the same field being visible at the same time.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 67

4.4.5 Creating a List of Functions Where You Can Bind Fields
By adding the following above the document.ready() function in the
customTemplate_sample.js file:

// Will be called when the field with id "50" changes
function on50Changed(value) {

}

And the following inside the $(document).ready function:

var pl = vizrt.payloadhosting;
pl.initialize();
pl.setFieldValueCallbacks({ "50": on50Changed });

You set up a way for a custom JavaScript function to be called upon detecting a change. When
field_50 receives a change from the host, the function will be called with its new value as a
parameter.

Some changes will be made to the HTML file below to demonstrate that we can use custom HTML/
JavaScript to do something with these values.

Inside the HTML file, the entire body is replaced with:

<body>
 My custom 50 field
</body>

To add some CSS to style the text, add the style tag after the closing </head> tag and before the
<body> tag:

<style>
 .sample {
 padding:5px;
 color:white;
 border-radius:5px;
 text-shadow:0 1px 0 black;
 background:red;
 }
 .green {
 background:green;
 }
</style>

This provides the following output in Template Builder:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 68

Adding a bit more custom logic, we will make the background color green when there is a text
value that is longer than five or shorter than 20 characters. The function is expanded by adding
the following function:

function on50Changed(value) {
 var myField = $("#myfield");
 myField.text(value);
 if (value.length > 5 && value.length < 20) {
 myField.addClass("green");
 } else {
 myField.removeClass("green");
 }
}

After refreshing the HTML panel, the background color should change to green dynamically when
typing.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 69

4.4.6 Redesigning Concept/Variant Fields
This example shows how to present the concepts and variants in a template in a different way.

The full HTML / JavaScript code is available at http://<pilotdataserverhost>:8177/app/
templatebuilder/samples/html_panels/concept_variant.

Let's consider a template with concepts Fullscreen, Lower Third, OTS and variants Red, Green,
Blue available as drop-down lists in the Fill In Form:

The field -concept-variant-choice actually contains 2 subfields, concept and variant.
You can access their value using slash "/" to navigate in the list. For example, to access the
concept use -concept-variant-choice/concept.

By setting up the HTML panel hosted at http://<pilotdataserverhost>:8177/app/templatebuilder/
samples/html_panels/concept_variant, the concepts and variants are now presented as buttons.
This example has mutual binding support for both concept and variant - clicking on the new
buttons updates the original drop-downs and vice versa:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 70

The drop-down lists are no longer needed and can be set as a Hidden field in the HTML panel
properties window:

4.4.7 Controlling the Auto-generated Fill In Form from the HTML
Template

It's possible to dynamically set visibility and read-only attributes, so you can filter the auto-
generated form based on the custom HTML template.
In the following example, the 31 image field should only be visible when the Fullscreen or OTS
concept is active:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 71

In the JavaScript used in the example, there is a function called updateActiveConcept which is
called when the concept changes.

Adding the following line inside the updateActiveConcept method block, it checks which concept is
chosen. If it isn't Lower Third, it displays the field with ID 31 in the Fill In Form:

pl.setFieldVisibility("31", conceptValue != "Lower Third");

If you now click on the Lower Third, the image field with ID 31 disappears, but is displayed if the
OTS or Fullscreen concept is selected.

Sub Fields
Sub fields can be addressed by using a " / ", which is read as field/subfield.

When using duplets or triplets, the example below shows how you are able to control the value of
image_scaling by using 1/image_scaling.

Note: This is a powerful feature that lets you customize available editing options based on
certain conditions set in the template.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 72

Info: It remains possible to use setFieldText(field, value) where field is field/subfield and
value is 1 2 3.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 73

•
•
•
•

4.5 Auto-Generated Title
The Title setting provides an auto-generation of the title. The title can be plain text or it can be a
placeholder for one or several field values, or it can be a combination of these. The placeholder is
the {Field ID}, the example below shows a combination of plain text, field name, and sub-field
name:

A template title can be auto-generated by combining one or several of these options:

Normal text: Plain text (red).
{Field ID}: Substituted with the value of the field (green).
{Field ID/subfield ID}: Substituted with the value of the subfield (purple).
{listfieldname/#index/cellname}: Substituted with the value of the field in a row in a list.
Note that the index is zero-based.

Warning: The auto-generated title's length is not shortened in Vizrt web clients. However, if
the title is longer than 128 characters it will be reduced when dragging out the MOS XML
file due to size constraints. This affects the element title in the newsroom system.



Note: When the template uses custom HTML representation, it is highly recommended to
set a pattern for Auto-generated title.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 74

4.6 Environment Variables
In Template Builder there are some built-in system environment variables, and it is also possible to
define your own environment variables through URL parameters to the application. These URL
parameters must also be added to the Viz Pilot Edge URL when templates and data elements are
using these variables. If a variable is used, but not defined, it is possible to set a default value.

4.6.1 Defining Environment Variables
The application defines the following application specific environment variables:

Variable Value

$APP "TemplateBuilder" or "PilotEdge".

$PDS URL to the Pilot Data Server.

$GH URL to the configured Graphic Hub for scenes.

It is also possible to define custom environment variables to be used in the templates. These
variables can be specified as URL parameters to the application. Environment variable in the URL
must use the format $var=value, where the name of the variable must start with a dollar sign and
the value is set after the equal sign. There can be multiple environment values specified. For
example, if the variable version can be specified like this in URL to the application http://
mypds:8177/app/templatebuilder/templatebuilder.html?$version=v1, then the value of the
variable version can be used when specifying URLs to HTML panels, in feed URLs, expressions and
auto title formatting.

4.6.2 Using Environment Variables
In general, the notation for using environment variables is {$var|default}, where var is the name of
the variable and default is the default value if the variable is not defined.

When using an environment variable in a URL, the URL must be prepended with "{$}" if it does not
start with an environment variable.

See the examples below:

Scenario Example Description

URL to HTML panel or full
HTML page

{$} http://mywebserver/
templatepanels/{$version|
v1}/mypanel.html

The full URL used by the application
is http://mywebserver/
templatepanels/v1/mypanel.html if
the environment variable version is
not defined in a URL parameter.

http://mypds:8177/app/templatebuilder/templatebuilder.html&$version=v1,
http://mywebserver/templatepanels/%7B$version%7D/mypanel.html

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 75

Scenario Example Description

URL to a feed of objects
from graphic hub

{$GH} /files/BAA340C1-
C71E-0949-BCF6-
F7E043856030/

The {$GH} environment variable
contains the full URL to the Graphic
Hub and certifies that if the system is
configured to point to another
Graphic Hub, the link still works.

Inside HTML fragments <img src="{{$PDS}}/
pilotedge-3.0/
vizPilotEdgeLogo.svg">

Note the double brackets around the
variable.

Inside HTML fragments {{$APP}}

{{$PDS}}

{{$GH}}

Writes out the application specific
environment variables.

Auto generated title
format

{field1} / {field2} ({$version|
DEV})

Concatenates the values of field1 and
field 2 and the word DEV, if
version is not defined in a URL
parameter.

In expressions {{$APP}}
==="TemplateBuilder"

Note the double brackets. This can
hide a field if the template is opened
in Template Builder, when added to
the "Hidden expression" for a field in
the field editor.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 76

•
•
•

•
•
•
•

4.7 Execution Logic Editor
Execution Logic commands are saved as part of a template. This allows data elements based on
the template to use the same execution logic commands.

For example, adding an execution logic script to the Media Sequencer command Take, replaces the
Take command for all data elements based on that template.

A benefit of using Execution Logic is that the script can be run without the need for Director to be
open. It is possible to use a limited set of commands, or any Viz Engine command, straight on
Media Sequencer to issue instructions.

This section contains the following topics:

Enabling the Execution Logic Editor
Execution Logic Editor
Working with Execution Logic

Send Basic Commands
Example - Play, Continue, Take Out
Example - Forked Execution
Example - Commands Generated by a Template

4.7.1 Enabling the Execution Logic Editor
Template Builder needs to be opened with a special URL parameter to enable this feature:
features=execution-logic. For instance: http://localhost:8177/app/templatebuilder/
templatebuilder.html?features=execution-logic.

When this URL parameter is added, an Execution Logic panel is added to Template Builder next to
the Fill-in form.

http://localhost:8177/app/templatebuilder/templatebuilder.html?features=execution-logic

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 77

•

•

•

4.7.2 Execution Logic Editor

The Execution Logic editor consists of two parts, a list of commands and an XML editor for the MSE
commands. In addition there is a status bar displaying syntax errors.

Command list: The top toolbar displays the available commands. If a command is written in
bold, it has custom logic inside. It is possible to implement some commands but not all. The
commands left empty behave as normal. It can also be useful to prevent some commands,
then inserting a log line only logs and does not execute the default action. For instance

<log>CUE not supported.</log>
Command editor: Displays the currently selected command and its execution logic. Available
context menu option is Insert Default Action.

Insert default action: Inserts the default command <ref>/logic/element/run</ref>

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 78

•
•
•
•

4.7.3 Working with Execution Logic
This section contains the following topics:

Send basic commands
Example - Play, Continue, Take Out
Example - Forked Execution
Example - Commands generated by a template

Send Basic Commands

The <viz> handler is used to send commands to Viz Engine.

The following example sends the RENDERER SET_OBJECT SCENE*... command to channel “A” in

the current profile:

<env viz="A">
 <viz>RENDERER SET_OBJECT SCENE*...</viz>
</env>

Multiple commands can be sent by separating each command with
 , for example:

<viz>RENDERER SET_OBJECT ...
RENDERER*STAGE START</viz>

Instead of setting the command directly, a more powerful approach is to use the contents of a field
in the template. The field (a hidden textbox for instance) can then be filled with the Viz commands
that need to be sent.

This example shows how the contents of a data field in a data element can be retrieved by using

the <ref> construct ("field_01" is the ControlObjectName of the data field):

<env viz="A">
 <ref><var>element</var>/data/field_01</ref>
</env>

To send commands to several channels, duplicate the command:

<env viz="A">
 <ref><var>element</var>/data/field_01</ref>
</env>
<env viz="B">
 <ref><var>element</var>/data/field_02</ref>
</env>

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 79

Example - Play, Continue, Take Out
This example shows how execution logic can be used to play an element, do a Continue after five
(5) seconds, and then a Take Out after ten (10) seconds.

In the Execution Logic Editor, select the “take” command, add the logic into the editor (right pane).
This means that when a “take” is issued on a data element based on this template, Media
Sequencer executes the logic.

The commands are modified to do a "take", "continue" and then an "out" . The timecode

for each operation must be set.

<relative>
 <env command="take" timecode="00:00:00:00">
 <ref>/logic/element/run</ref>
 </env>
 <env command="continue" timecode="00:00:05:00">
 <ref>/logic/element/run</ref>
 </env>
 <env command="out" timecode="00:00:10:00">
 <ref>/logic/element/run</ref>
 </env>
</relative>

Example - Forked Execution
These examples show how the "take" command can be modified to make the template override the

standard logic and instead send RENDERER*STAGE START .

Here, the command is sent to the channel assigned to the data element:

<forked_exec>
 <entry name="execution_group"><var>channel</var></entry>
 <viz>RENDERER*STAGE START</viz>
</forked_exec>

To send commands to a specific channel in the current profile, replace <var>channel</var>
with the name of the channel you want to send to, as follows:

Note: Forked execution is required when a channel contains multiple engines, otherwise
the commands only applies to the first engine in a channel.



Note: Execution logic does not work with non-control object based templates.

Note: The running/outer context takes precedence over attributes on the “ref”. Instead of
adding attributes on the “ref” node, you use an “env” node as in the example above.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 80

<forked_exec>
 <entry name="execution_group">MY_CHANNEL</entry>
 <viz>RENDERER*STAGE START</viz>
</forked_exec>

Example - Commands Generated by a Template
By using the information from the preceding examples, we can create logic that sends custom Viz
commands that are generated by the template.

One way would be to add a Value Control Component to the template, and set the

ControlObjectName to "vizcmds" . Then create a regular script that sets the ControlValue of the

TWValueControl to whatever command needs to be sent.

Alternatively, use a standard memo box, and set the ControlObjectName to "vizcmds" . Then

enter the Viz commands (or script what the contents should be). The memo box’s visibility can be
set to false so the user can’t see it. In the Execution Logic you can then add the following:

<forked_exec>
 <entry name="execution_group"><var>channel</var></entry>
 <viz>
 <ref><var>element</var>/data/vizcmds</ref>
 </viz>
</forked_exec>

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 81

•
•

•
•
•
•

•
•

5 Transition Logic And Combo Templates
This section covers transition logic and combo templates, and contains the following topics:

What is Transition Logic (TL)?
How does TL Work?

Master Scenes
Object Scenes
Combo Templates
TL Terminology

Working with Transition Logic and Combo Templates
Creating a New Combo Template

5.1 What Is Transition Logic (TL)?
Transition Logic (TL) is a way of designing a graphics package that lets you maintain the look and
feel of the graphics while letting journalists add graphics items to a rundown, without the need for
technical knowledge. TL lets you independently control any number of graphics layers, providing a
code-free and design-based method to build graphics that gracefully animate in and out, and
transitions from one to another automatically.

5.2 How Does TL Work?

5.2.1 Master Scenes
This is accomplished by using a Master Scene (aka Background Scene) that coordinates the
animation of independently controlled objects which make up the whole. The master scene
commonly contains the background items of the graphics package. Such items can be looping
backgrounds or the design items of the lower third, over the shoulders, and full-screen graphics.
The variable or changing content, such as the text in a lower third, is stored separately in Object
Scenes.

5.2.2 Object Scenes
When a lower third is played On Air, the object scene for the lower third is triggered. This tells the
engine to load the master scene, place the object scene inside the master, and animate the
timelines. TL handles all of this automatically.

5.2.3 Combo Templates
These are templates that contain multiple layers of TL scenes.

Info: Transition Logic (TL) can be played out by most Vizrt control applications such as Viz
Trio, Viz Pilot, Viz Multiplay and Viz Multichannel.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 82

•
•

•

•

5.2.4 TL Terminology
Combo Templates: A TL template that contains more than one layer of scenes.
Master Scenes: A TL scene is not a single scene, but a set of Viz graphics scenes that consist
of a master scene that may have multiple layers of graphics that can be On Air at the same
time and independently controlled.
Object Scenes: Each layer in the master scene may have multiple referring object scenes.
However, only one object scene per layer can be active at any given time.
Layers: Layers in the transition logic scene define how many scenes can be on air at the
same time. TL layers are conceptual, not spatial.

5.3 Working With Transition Logic And Combo Templates
Follow the steps below to get started.

5.3.1 Creating a New Combo Template
Create a new template and add transition logic scenes. The following example use Blue and Green
concepts.

Note: With Transition Logic scene design, take in and take out commands are still used as
with standalone scene design. Where standalone scene design demands that only a single
scene can be On Air at a time, however, Transition Logic allows for more than one scene to
be On Air simultaneously. This means that using Transition Logic lets you have a graphic
covering the lower third of the screen and another graphic covering the left and/or right
side of the screen for over the shoulder graphics On Air at the same time.



Note: Transition logic and combo templates require Viz Engine 4.3 or above. 

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 83

•

•

•

•

•
•

Select scenes and click OK.

The new template contains transition logic and two layers, it is therefore, a combo template:

Right click the Default concept to replace it with a new one:

Click +Add Concept in the lower left corner of the screen. Enter a name for your new concept
and click OK.
Click the +Add Scene button.
Select the scenes with the same set of control objects as those you selected for the first
concept.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 84

• In the Fill-in form, you can now see that the template contains two concepts and two layers.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 85

•

•
•
•
•
•

•

6 Previewing Content
The Graphics Preview window is located to the right of the interface. It displays snapshots of the
final output in an ongoing preview process, and provides an indication of how the graphics look
when played out in high resolution on a Viz Engine.

Preview points: If the scene contains named preview points, such as stop points and/or tags
in the Default director, these are displayed as a timeline on top of the preview. Small circles
represent the preview points.
Download button: Downloads the current preview snapshot as a PNG file in HD resolution.
TA: Show/hide the Title Area.
SA: Show/hide the Safe Area.
K: Show the key signal for the graphics.
Refresh: Visible when auto refresh is disabled. Sends a preview request to Preview Server
with the current data. The request is unique, meaning that the preview server does not
return a cached version of the snapshot. Preview Server also checks whether the scene itself
is updated in Viz Artist and returns the latest saved version.

Auto-refresh: Enabled by default. Send a preview request for any user generated change
that may lead to the snapshot being changed.

Note: Template Builder sends requests to Preview Server which manages the Viz Engines
that provide the snapshots.



Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 86

6.1 Viz Scene - OnPreview()
In the Viz Scene Script, you can use the OnPreview() function to customize the preview shown in
Template Builder and Viz Pilot Edge.
Here is a sample code for Viz Scene Script:

//If AlwaysRunPreviewScript is set to True in Preview Server, this will get the
hostname of the Viz Engine rendering the preview and sets the returned value in the
text container from JustForPreview->Hostname.
//It also sets the container visibility to True, thus revealing the hostname and
background image, but only in Preview.

sub OnPreview(active As Integer)
 FindContainer("JustForPreview$Hostname").Geometry.Text = "Hostname: "&
System.Hostname
 FindContainer("JustForPreview").active = true
end Sub

Info: Clicking on a preview point to request a preview sends a snapshot request with a
named position to Preview Server. Clicking on the timeline sends a snapshot request with
an absolute position to Preview Server. For more information, see the Preview Server REST
API documentation.



http://docs.vizrt.com/preview-server.html

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 87

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 88

To enable this functionality in Preview Server, navigate to the location of the
PreviewServer.exe.config and set the value True for AlwaysRunPreviewScript:

You then have to restart the Preview Server Windows Service for this change to take effect. The
preview now displays the hostname of the Viz Engine:

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 89

•
•
•
•

7 Appendix
The appendix contains the following pages:

Keyboard Shortcuts
Troubleshooting
Overview of Media Types
Overview of Control Plugins

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 90

7.1 Keyboard Shortcuts
This page lists available keyboard shortcuts in Template Builder.

Shortcut Description

CTRL + O Open the Open Template dialog where you can select a
template to open.

CTRL + S Save a template.

CTRL + Z Undo.

CTRL + Y Redo.

7.1.1 Graphics Preview Player Shortcuts
Use the following shortcuts for the Graphics Preview player:

Shortcut Description

SPACE or CTRL + SPACE Play/pause.

SHIFT + I Go to the in-point.

SHIFT + O Go to the out-point.

, (comma) Move one frame back.

. (period) Move one frame forward.

Warning: The shortcut CTRL + O does not work properly in Firefox version 65.0.1 and later.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 91

•
•
•
•
•
•

7.2 Troubleshooting
A list of known issues and their fixes are listed below.

Create New Button Not Displayed on UI
GH Scenes Tree Not Displayed when Pressing Create New
An Error Message is Shown when attempting to Open a Scene
Preview Server Error Message Shown when trying to Open a Scene
Scene Blocked due to Outdated or Empty Geom
Support

7.2.1 Create New Button Not Displayed on UI
An outdated PDS version (<8.5) is installed. Install version 8.5 or above. Preview Server must also
be updated to 4.4.1 or above.

7.2.2 GH Scenes Tree Not Displayed when Pressing Create New
Make sure that http://<PDS server>:8177/app/DataServerConfig/DataServerConfig.html

→ graphic_hub_url is properly set.

7.2.3 An Error Message is Shown when attempting to Open a Scene
An outdated GH REST version (<3.4.2) is installed. Install version 3.4.2 or later.

7.2.4 Preview Server Error Message Shown when trying to Open a
Scene

Check that the http://<PDS server>:8177/app/DataServerConfig/DataServerConfig.html →
preview_server_uri property is set.

7.2.5 Scene Blocked due to Outdated or Empty Geom
If the Geom of a scene is outdated or empty when creating a transition logic template, Template
Builder blocks the use of the scene.
To fix this, save or update the scene in Viz Artist > 4.2.

Enable automatic creation of merged geometries when saving a transition logic scene:
AutoExportTransitionLogicGeometries = 1.

Note: Pilot Data Server version 8.6 is mandatory for Transition Logic support.

Important: The feature below must be enabled in the Viz Artist config file. 

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 92

See the Viz Artist User Guide for more information on editing the Viz Artist config file.

7.2.6 Support
Support is available at the Vizrt Support Portal.

http://docs.vizrt.com/viz-artist.html
https://community.vizrt.com/

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 93

7.3 Overview Of Media Types
The following media types are available for single value fields in Template Builder (click the links
for W3C definitions):

Type Media Type (XSD type) Content of field/value
element

Multi-line text text/plain (string) text

Single-line text text/plain
(normalizedString)

text

Formatted text application/
vnd.vizrt.richtext+xml

XML (accepts plain text if
unformatted)

Boolean text/plain (boolean) text (true or false)

Integer text/plain (integer) text (for example, -42)

Decimal text/plain (decimal) text using period as decimal

point (for example, 123.456)

Date and time text/plain (dateTime) text (for example,

2021-04-06T13:35:00Z)

Date text/plain (date) text (for

example, 2021-04-14)

Two numbers (duplet) application/
vnd.vizrt.duplet

text containing
two decimal numbers
separated by a space (for

example, 0.6 0.8)

Three numbers (triplet) application/
vnd.vizrt.triplet

text containing
three decimal numbers
separated by spaces (for

example, 3 4.5 5)

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#normalizedString
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#decimal

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 94

Type Media Type (XSD type) Content of field/value
element

Image application/atom+xml;
type=entry;media=image

The image path on GH (for

example, IMAGE*images/

flags/denmark)

Geometry application/
vnd.vizrt.viz.geom

The geometry path on GH
(for

example, GEOM*objects/

my-geom)

Material application/
vnd.vizrt.viz.material

The material path on GH (for

example, MATERIAL*object

s/my-material)

Map application/
vnd.vizrt.curious.map

Proprietary format

Color text/vnd.vizrt.color text (for example, #140E7E
or rgba(255, 0, 0, 1)).

https://tools.ietf.org/html/rfc4287#section-4.1.2

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 95

7.4 Overview Of Control Plugins

7.4.1 Supported Viz Artist Control Plugins

Plugin
Name

Comments

Control
Chart

The Control Chart plug-in exposes control of chart data from the Visual Data Tools
plugins.

Control
Text

From Viz Engine 5.0.1 and above, Control Text exposes text from both the Classic
and Viz Engine renderer pipeline.

Control
Geom

The Control Geom plug-in exposes the control of geometry objects to the user.

Control
Image

The Control Image plug-in creates an image control in the control clients.

Control
List

The Control List plug-in allows you to create table controls. Normally there should be
a Control Object for each row.

Control
Material

The Control Material plug-in exposes the material control to the user. Remember to
set up a search provider towards Graphic Hub, to use this.

Control
Number

The Control Number plug-in (also known as Control Num) is used to be able to
decide how a number input is to be formatted. It can be a value given by the control
client user or by any external source. It should be used instead of Control Text when
numbers are the input value.

Control
Object

Control Object should always be added to a scene when you add other control
plugins. It is in this plugin that you mark if a scene is part of a transition logic set or
not. There should normally only be one control object in the scene. The exception is
when you use a control list when there is a control object for every line.

Control
OMO

The Control Object Moving (Omo) plug-in gives you the possibility to add a group of
containers and reveal one at the time. This control plugin exposes an integer. It is
typically nice to use a dropdown for these with proper field names.

Control
Video

The Control Video plug-in exposes control over a video codec channel (ClipChannel).
Does not support clips in soft clip players.

Control
WoC

A replacement of the Control Maps plugin with more options and on-the-fly feedback
from Viz Artist/Engine.

Template Builder User Guide - 3.1

Copyright © 2024 Vizrt Page 96

Info: If a Control Plugin is not listed in the table above, it is not supported by Graphic Hub
and/or Template Builder.



	Introduction
	Workflow
	Related Documents
	Feedback

	Setup and Configuration
	Opening Template Builder
	Configuring Preview Server
	Specifying a Graphic Hub Endpoint
	Monitoring Graphic Hub Status

	Creating and Managing Templates
	Creating a New Template
	Opening a Template
	Template Management
	Manage Scenes
	Advanced Dialog
	Template Compatibility
	Concept Manager

	Customizing Templates
	Template Scripting
	The Script Editor
	Initialization
	Field Access
	Quick Start Examples

	Template Layout
	Creating a Template
	Adding Alternative Layout Forms

	Template Fields
	Field Tree
	Field Properties
	Field Types
	Data Entry
	Inline HTML Fragment
	Inline HTML Panel

	Custom HTML Templates
	Setting Up a Simple Custom HTML Template
	Full Screen for Custom HTML Panels
	Connecting a Custom HTML Template to a Viz Pilot Template
	Connecting a Custom HTML Template to a Viz Pilot Template - Advanced
	Creating a List of Functions Where You Can Bind Fields
	Redesigning Concept/Variant Fields
	Controlling the Auto-generated Fill In Form from the HTML Template

	Auto-generated Title
	Environment Variables
	Defining Environment Variables
	Using Environment Variables

	Execution Logic Editor
	Enabling the Execution Logic Editor
	Execution Logic Editor
	Working with Execution Logic

	Transition Logic and Combo Templates
	What is Transition Logic (TL)?
	How does TL Work?
	Master Scenes
	Object Scenes
	Combo Templates
	TL Terminology

	Working with Transition Logic and Combo Templates
	Creating a New Combo Template

	Previewing Content
	Viz Scene - OnPreview()

	Appendix
	Keyboard Shortcuts
	Graphics Preview Player Shortcuts

	Troubleshooting
	Create New Button Not Displayed on UI
	GH Scenes Tree Not Displayed when Pressing Create New
	An Error Message is Shown when attempting to Open a Scene
	Preview Server Error Message Shown when trying to Open a Scene
	Scene Blocked due to Outdated or Empty Geom
	Support

	Overview of Media Types
	Overview of Control Plugins
	Supported Viz Artist Control Plugins

